Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 72(7): 709-714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37380486

RESUMO

The adsorption and lubrication of an amino acid-based surfactant at the solid/liquid interface were studied in the presence of calcium ions. The surfactant used here was disodium N-dodecanoylglutamate (C12Glu-2Na). The solid surface used in this study was hydrophobically modified to mimic the hydrophobicity of the skin surface. Quartz crystal microbalance with dissipation monitoring (QCM-D) measurements revealed that the anionic surfactant was adsorbed on the hydrophobically modified solid surface. The replacement of the surfactant solution with CaCl2 aqueous solution resulted in the desorption of the surfactant to some extent; however, a rigid and elastic adsorption film interacting with calcium ions remained on the solid surface. The adsorption film containing calcium ions lowered the kinetic friction coefficient in aqueous media. The insoluble calcium salt of the surfactant, dispersed in the solution phase, also contributed to lubrication. We expect that the usability of personal care products formulated using amino acid-based surfactants is relevant to such adsorption and lubrication properties.


Assuntos
Surfactantes Pulmonares , Tensoativos , Ácido Glutâmico , Cálcio , Adsorção , Lubrificação , Lipoproteínas , Aminoácidos , Íons
2.
J Oleo Sci ; 72(6): 613-621, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164690

RESUMO

Surfactant-mediated gelation (SMG) is a technique used to form hydrogels by solubilizing water-insoluble low-molecular-weight organogelators in surfactant micelles. In this study, we investigated the viscoelastic behavior of SMG hydrogels and the effect of micellar shape on their gel network structure using a glutamic acid-based organogelator. Stress-strain curves obtained from static viscoelasticity measurements showed that a wormlike micelle-mediated gel (W-SMG) exhibited a higher stress than a spherical micelle-mediated gel (S-SMG). From the viscosity-shear rate curve (flow curve), we inferred that the SMG gel exhibited a shear thickening behavior, particularly W-SMG. Microscopic observations revealed that W-SMG formed a denser and more uniform gel network than S-SMG when subjected to strong shearing. W-SMG showed remarkable adhesiveness and a significantly higher tensile normal stress than S-SMG. The storage modulus and loss modulus of W-SMG and the wormlike micellar solution obtained from frequency sweep measurements of the dynamic viscoelasticity were analyzed by Maxwell fitting. The wormlike micellar solution produced a good fit with the single Maxwell model, whereas W-SMG produced the best fit with the generalized Maxwell model comprising two Maxwell elements. From the relaxation time characteristics obtained from the Maxwell model, W-SMG was found to be a viscoelastic material coexisting with a structure having a short relaxation time derived from the gel network and a long relaxation time derived from the wormlike micelle. Under the oscillation strain measured by a rheometer, W-SMG showed a greater normal stress than the wormlike micellar solution, indicating a significant Weissenberg effect.


Assuntos
Ácido Glutâmico , Surfactantes Pulmonares , Ácido Glutâmico/química , Tensoativos/química , Micelas , Hidrogéis
3.
J Oleo Sci ; 71(8): 1169-1180, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35793975

RESUMO

Hydrogels formed by low-molecular-weight gelators have reversible sol-gel transition and responsiveness to various stimuli, and are used in cosmetics and drug applications. It is challenging to obtain hydrogels using novel gelators because subtle differences in their molecular architecture affect gelation. Organogelators (which form organogels) are insoluble in water, and their use as hydrogelators has not previously been considered. However, a surfactant-mediated gelation method was reported in which organogelators were solubilized in water by surfactants to form hydrogels using 12-hydroxyoctadecanoic acid. To investigate whether this method can be applied with other organogelators, the formation of hydrogel using a glutamic-acid-based organogelator was studied here. Hydrogels were formed by solubilizing 1:1 mixtures of glutamate-based organogelators, N-lauroyl-L-glutamic acid dibuthylamide, and N-2-ethylhexanoyl-L-glutamic acid dibutylamide in aqueous micellar solutions of anionic surfactant (sodium lauroyl glutamate) and cationic surfactant (cetyltrimethylammonium chloride). The minimum gelation concentration of the hydrogel was ~0.2-0.6 wt%. By changing the molar fraction of cetyltrimethylammonium chloride in the mixed surfactant, either spherical or wormlike micelles were formed. The hydrogel with wormlike micelles had a higher sol-gel transition temperature than that with spherical micelles and formed fine self-assembled fibrillar networks. Additionally, the hydrogel with the spherical micelles was elastic, whereas that with wormlike micelles was viscoelastic, suggesting that networks of the organogelators and wormlike micelles coexisted in the hydrogel from the wormlike micellar solution. Moreover, the hydrogel suppressed the reduction in the storage modulus at higher temperatures compared with the micellar aqueous solution, indicating that the elastic properties of the organogelator networks were maintained at high temperatures. The gel fibers of the hydrogel partially formed a loosely aggregated structure as the temperature increased, the fibers bundled via hydrophobic interactions, and new cross-linking points formed spontaneously. This phenomenon corresponded with an inflection point in the temperature-dependent storage modulus of the hydrogel.


Assuntos
Surfactantes Pulmonares , Tensoativos , Cetrimônio , Excipientes , Ácido Glutâmico/química , Hidrogéis , Micelas , Tensoativos/química , Água/química
4.
J Oleo Sci ; 69(11): 1411-1416, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055448

RESUMO

Coacervates formed by cationic polyelectrolytes and anionic surfactants are utilized to improve the user's tactile perception of shampooing hair during washing and after drying. In this study, we investigated the formation and structure of coacervates in aqueous systems containing anionic amino acid surfactants. The phase behaviors at constant temperature were investigated in aqueous systems combining cationic polyelectrolyte JR-400 with potassium cocoyl glutamate (CoGluK) or potassium cocoyl glycinate (CoGlyK) for a qualitative depiction of coacervate formation. The composition range of coacervate formation varied with the hydrophilic group of the surfactant. The surface tension was measured at different surfactant concentrations and constant polyelectrolyte concentration. The surface tension behavior revealed the critical association concentrations and critical micelle concentrations, indicating that coacervate was produced via complex formation through electrostatic interaction between opposite charges. Optical microscopy and small-angle X-ray scattering measurements revealed that the coacervates were composed of fibrous aggregates, a few microns thick, and those formed in the CoGlyK system had thicker fibers.


Assuntos
Aminoácidos/química , Preparações para Cabelo/química , Polieletrólitos/química , Tensoativos/química , Protocolos de Quimioterapia Combinada Antineoplásica , Cátions , Ciclofosfamida , Etoposídeo , Interações Hidrofóbicas e Hidrofílicas , Mitoxantrona , Prednisona , Soluções , Eletricidade Estática , Propriedades de Superfície , Tensão Superficial , Água , Difração de Raios X
5.
J Oleo Sci ; 59(4): 203-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20299767

RESUMO

We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.


Assuntos
Compostos de Cetrimônio , Etanolaminas , Glutamatos , Tensoativos , Substâncias Viscoelásticas , Compostos de Bis-Trimetilamônio , Cetrimônio , Micelas , Viscosidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...